Malleability of human skeletal muscle Na(+)-K(+)-ATPase pump with short-term training.

نویسندگان

  • H J Green
  • D J Barr
  • J R Fowles
  • S D Sandiford
  • J Ouyang
چکیده

To investigate the hypothesis that short-term submaximal training would result in changes in Na(+)-K(+)-ATPase content, activity, and isoform distribution in skeletal muscle, seven healthy, untrained men [peak aerobic power (peak oxygen consumption; Vo(2 peak)) = 45.6 ml x kg(-1) x min(-1) (SE 5.4)] cycled for 2 h/day at 60-65% Vo(2 peak) for 6 days. Muscle tissue, sampled from the vastus lateralis before training (0 days) and after 3 and 6 days of training and analyzed for Na(+)-K(+)-ATPase content, as assessed by the vanadate facilitated [(3)H]ouabain-binding technique, was increased (P < 0.05) at 3 days (294 +/- 8.6 pmol/g wet wt) and 6 days (308 +/- 15 pmol/g wet wt) of training compared with 0 days (272 +/- 9.7 pmol/g wet wt). Maximal Na(+)-K(+)-ATPase activity as evaluated by the 3-O-methylfluorescein phosphatase assay was increased (P < 0.05) by 6 days (53.4 +/- 5.9 nmol x h(-1) x mg protein(-1)) but not by 3 days (35.9 +/- 4.5 nmol x h(-1) x mg protein(-1)) compared with 0 days (37.8 +/- 3.7 nmol x h(-1) x mg protein(-1)) of training. Relative isoform distribution, measured by Western blot techniques, indicated increases (P < 0.05) in alpha(2)-content by 3 days and beta(1)-content by 6 days of training. These results indicate that prolonged aerobic exercise represents a potent stimulus for the rapid adaptation of Na(+)-K(+)-ATPase content, isoform, and activity characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of exercise and training on phospholemman phosphorylation in human skeletal muscle.

Phospholemman (PLM, FXYD1) is a partner protein and regulator of the Na(+)-K(+)-ATPase (Na(+)-K(+) pump). We explored the impact of acute and short-term training exercise on PLM physiology in human skeletal muscle. A group of moderately trained males (n = 8) performed a 1-h acute bout of exercise by utilizing a one-legged cycling protocol. Muscle biopsies were taken from vastus lateralis at 0 a...

متن کامل

Clinical and therapeutic significance of the Na+,K+ pump*.

1. The Na+,K+-ATPase or Na+,K+-pump, mediating the active transport of Na+ and K+, which was first identified 40 years ago, is a central target for acute and long-term regulation, as well as for therapeutic intervention. Acute stimulation of the Na+,K+-pump in skeletal muscle by insulin, catecholamines, beta2-agonists or theophylline increases the intracellular uptake of K+ and accounts for the...

متن کامل

Downregulation of Na+-K+-ATPase pumps in skeletal muscle with training in normobaric hypoxia.

To investigate the effects of training in normoxia vs. training in normobaric hypoxia (fraction of inspired O2 = 20.9 vs. 13.5%, respectively) on the regulation of Na+-K+-ATPase pump concentration in skeletal muscle (vastus lateralis), 9 untrained men, ranging in age from 19 to 25 yr, underwent 8 wk of cycle training. The training consisted of both prolonged and intermittent single leg exercise...

متن کامل

AMP-activated protein kinase activator A-769662 is an inhibitor of the Na(+)-K(+)-ATPase.

Muscle contraction and metabolic stress are potent activators of AMP-activated protein kinase (AMPK). AMPK restores energy balance by activating processes that produce energy while inhibiting those that consume energy. The role of AMPK in the regulation of active ion transport is unclear. Our aim was to determine the effect of the AMPK activator A-769662 on Na(+)-K(+)-ATPase function in skeleta...

متن کامل

Altered expression and insulin-induced trafficking of Na+-K+-ATPase in rat skeletal muscle: effects of high-fat diet and exercise.

Skeletal muscle Na(+)-K(+)-ATPase plays a central role in the clearance of K(+) from the extracellular fluid, therefore maintaining blood [K(+)]. Na(+)-K(+)-ATPase activity in peripheral tissue is impaired in insulin resistant states. We determined effects of high-fat diet (HFD) and exercise training (ET) on skeletal muscle Na(+)-K(+)-ATPase subunit expression and insulin-stimulated translocati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 97 1  شماره 

صفحات  -

تاریخ انتشار 2004